
/burl@stx null def /BU.S /burl@stx null def def /BU.SS currentpoint /burl@lly exch def /burl@llx exch def burl@stx null ne burl@endx burl@llx ne BU.FL BU.S if if burl@stx null eq burl@llx dup /burl@stx exch def /burl@endx exch def burl@lly dup /burl@boty exch def /burl@topy exch def if burl@lly burl@boty gt /burl@boty burl@lly def if def /BU.SE currentpoint /burl@ury exch def dup /burl@urx exch def /burl@endx exch def burl@ury burl@topy lt /burl@topy burl@ury def if def /BU.E BU.FL def /BU.FL burl@stx null ne BU.DF if def /BU.DF BU.BB [/H /I /Border [burl@border] /Color [burl@bordercolor] /Action « /Subtype /URI /URI BU.L » /Subtype /Link BU.B /ANN pdfmark /burl@stx null def def /BU.BB burl@stx HyperBorder sub /burl@stx exch def burl@endx HyperBorder add /burl@endx exch def burl@boty HyperBorder add /burl@boty exch def burl@topy HyperBorder sub /burl@topy exch def def /BU.B /Rect[burl@stx burl@boty burl@endx burl@topy] def /eop where begin /@ldeopburl /eop load def /eop SDict begin BU.FL end @ldeopburl def end /eop SDict begin BU.FL end def ifelse

Security Review For
Axal

Collaborative Audit Prepared For: Axal
Lead Security Expert(s): defsec
Date Audited: July 14 - July 21, 2025
Final Commit: 4159bad

1

https://github.com/defsec
https://github.com/getaxal/verified-signer/tree/4159bad9745663dcd839dd9ab2bf13f2967d9ea0

Introduction
Axal (getaxal.com, x.com/getaxal) streamlines earning yield on digital assets by using
non-custodial 7702 smart wallets, sponsoring gas/batching transactions, and investing
in top DeFi yield strategies.

Core components of the stack include Privy wallets and session signers, an open-sourced
Trusted Execution Environment (TEE) that validates and signs all transactions, and a
backend monitoring strategies and proposing transactions to the TEE.

This audit reviewed Axal’s TEE and conducted a blackbox penetration test of Axal’s
backend.

Scope
Repository: getaxal/verified-signer

Audited Commit: a94cc7f212861ba06e367a3bf6f612961696a64c

Final Commit: 4159bad9745663dcd839dd9ab2bf13f2967d9ea0

Files:

• common/aws/config.go

• common/aws/regions.go

• common/aws/secret_manager/config.go

• common/aws/secret_manager/secret_manager.go

• common/aws/secret_manager/utils.go

• common/go.mod

• common/go.sum

• common/network/client.go

• common/network/transport.go

• common/vsock/conn.go

• common/vsock/fd.go

• common/vsock/listener.go

• common/vsock/proxy/proxy.go

• common/vsock/socket/accept4.go

• common/vsock/socket/accept.go

• common/vsock/socket/conn.go

• common/vsock/socket/conn_linux.go

• common/vsock/socket/doc.go

2

• common/vsock/socket/netns_linux.go

• common/vsock/socket/netns_others.go

• common/vsock/socket/setbuffer_linux.go

• common/vsock/socket/setbuffer_others.go

• common/vsock/socket/typ_cloexec_nonblock.go

• common/vsock/socket/typ_none.go

• common/vsock/vsock.go

• common/vsock/vsock_others.go

• enclave/attestation/attestation_data.go

• enclave/attestation/attestation.go

• enclave/cmd/main.go

• enclave/config.go

• enclave/docker_build_prod.sh

• enclave/docker_build.sh

• enclave/go.mod

• enclave/go.sum

• enclave/privy-signer/authorization_signature/authorization_signature.go

• enclave/privy-signer/authorization_signature/signing.go

• enclave/privy-signer/data/message.go

• enclave/privy-signer/data/privy_eth_tx_data.go

• enclave/privy-signer/data/privy_sol_tx_data.go

• enclave/privy-signer/data/privy_user_data.go

• enclave/privy-signer/privy_api_paths.go

• enclave/privy-signer/privy_client.go

• enclave/privy-signer/privy_config.go

• enclave/privy-signer/privy_eth_signing.go

• enclave/privy-signer/privy_sol_signing.go

• enclave/router/attestation_handler.go

• enclave/router/eth_handlers.go

• enclave/router/health_handler.go

• enclave/router/router.go

3

• enclave/router/sol_handler.go

• enclave/utils.go

• enclave/verifier/verifier.go

• enclave/verifier/whitelist.go

• host/cmd/main.go

• host/go.mod

• host/go.sum

• host/logs.sh

• host/network/proxy.go

Final Commit Hash
4159bad9745663dcd839dd9ab2bf13f2967d9ea0

Findings
Each issue has an assigned severity:

• Medium issues are security vulnerabilities that may not be directly exploitable or
may require certain conditions in order to be exploited. All major issues should be
addressed.

• High issues are directly exploitable security vulnerabilities that need to be fixed.

• Low/Info issues are non-exploitable, informational findings that do not pose a
security risk or impact the system’s integrity. These issues are typically cosmetic or
related to compliance requirements, and are not considered a priority for
remediation.

Issues Found

High Medium Low/Info

1 5 21

4

https://github.com/getaxal/verified-signer/tree/4159bad9745663dcd839dd9ab2bf13f2967d9ea0

Issues Not Fixed and Not Acknowledged

High Medium Low/Info

0 0 0

5

IssueH-1: Integer overflow in ethereum transaction
value fields
Source: https://github.com/sherlock-audit/2025-07-axal-tee-server/issues/83

Summary
The Ethereum transaction data structure uses int64 type for value and gas-related fields,
which cannot represent the full range of valid Ethereum uint256 values. This causes
integer overflow for transactions exceeding approximately 9.2 ETH or gas prices above i
nt64maximum.

Vulnerability Detail
Ethereum blockchain uses uint256 (256-bit unsigned integers) for all monetary values and
gas calculations, with amounts denominated in Wei (1 ETH = 10^18 Wei). The current
implementation uses Go's int64 type, which has a maximum value of
9,223,372,036,854,775,807 (2^63 - 1).

This creates an overflow condition when:

• Transaction value exceeds ~9.223 ETH

• Gas prices exceed int64 maximum during high network congestion

• Gas limits exceed int64 maximum for complex operations

The overflow occurs silently in Go, resulting in incorrect values being processed without
error indication.

Impact
Transactions with values exceeding int64 maximum will overflow, resulting in incorrect
amounts being signed and sent.

Code Snippet

// Common transaction structure used in both APIs
type EthTransaction struct {

ChainID *int64 `json:"chain_id,omitempty"`
Data string `json:"data,omitempty"`
From string `json:"from,omitempty"`
GasLimit *int64 `json:"gas_limit,omitempty"` // Overflow

risk↪→

GasPrice *int64 `json:"gas_price,omitempty"` // Overflow
risk↪→

6

https://github.com/sherlock-audit/2025-07-axal-tee-server/issues/83

MaxFeePerGas *int64 `json:"max_fee_per_gas,omitempty"` // Overflow
risk↪→

MaxPriorityFeePerGas *int64 `json:"max_priority_fee_per_gas,omitempty"` //
Overflow risk↪→

Nonce *int64 `json:"nonce,omitempty"`
To string `json:"to"`
Type *int64 `json:"type,omitempty"`
Value *int64 `json:"value,omitempty"` // Primary

overflow risk↪→

}

Example overflow scenario:

• Sending 21.7 ETH = 21,734,488,100,000,000,000 Wei

• int64 maximum = 9,223,372,036,854,775,807 Wei

• Overflow result = 3,287,744,026,290,448,384 Wei (incorrect)

Tool Used
Manual Review

Recommendation
Replace int64 types with appropriate representations (Using math/big) for Ethereum uint
256 values.

Discussion
EkamSinghPandher

Accepted

defsec

The issue is fixed with https://github.com/getaxal/verified-signer/commit/85e30156d67
f77b5556a47abb8029063523958e7 .

7

https://github.com/getaxal/verified-signer/commit/85e30156d67f77b5556a47abb8029063523958e7
https://github.com/getaxal/verified-signer/commit/85e30156d67f77b5556a47abb8029063523958e7

IssueM-1: IncorrectHTTP status code inattestation
endpoints
Source: https://github.com/sherlock-audit/2025-07-axal-tee-server/issues/59

Summary
The attestation endpoints return HTTP 400 (Bad Request) instead of HTTP 200 (OK) for
successful operations, which could confuse clients and monitoring systems.

Vulnerability Detail
Both attestation handlers at verified-signer/enclave/router/attestation_handler.go:
47 and verified-signer/enclave/router/attestation_handler.go:80 return http.StatusB
adRequest instead of http.StatusOK when the attestation operation succeeds.

Impact
Applications may interpret successful attestations as failures.

Code Snippet

// verified-signer/enclave/router/attestation_handler.go:47
resp := attestation.AttestationBytesResponse{

Attestation: attString,
}
c.JSON(http.StatusBadRequest, resp) // Should be StatusOK

// verified-signer/enclave/router/attestation_handler.go:80
resp := attestation.AttestationDocResponse{

AttestationDoc: *doc,
}
c.JSON(http.StatusBadRequest, resp) // Should be StatusOK

Tool Used
Manual Review

Recommendation
Fix the HTTP status codes to return http.StatusOK for successful attestation operations.

8

https://github.com/sherlock-audit/2025-07-axal-tee-server/issues/59

Discussion
EkamSinghPandher

This is a bug, accepted. Good catch

defsec

The issue is fixed in the branch :
https://github.com/getaxal/verified-signer/compare/fix/sec-audit-fixes...main

9

https://github.com/getaxal/verified-signer/compare/fix/sec-audit-fixes...main

Issue M-2: Missing transaction verification on the
signer
Source: https://github.com/sherlock-audit/2025-07-axal-tee-server/issues/61

This issue has been acknowledged by the team but won't be fixed at this time.

Summary
The transaction verifier component exists but is completely bypassed in the signing flow,
allowing all transactions to be processed without whitelist verification.

Vulnerability Detail
The project includes a comprehensive transaction verifier with whitelist functionality at v
erified-signer/enclave/verifier/verifier.go:29-65, but none of the signing handlers
actually invoke this verification logic. The security control is implemented but never
executed.

Impact
All transactions are processed without verification.

Code Snippet

// verified-signer/enclave/verifier/verifier.go:29-65
func (v *Verifier) VerifyEthTxRequest(req data.EthTxRequest) bool {

// ... comprehensive verification logic exists ...
}

// verified-signer/enclave/router/eth_handlers.go:100-108
func EthTransactionSignTxHandler(c *gin.Context) {

// ... validation ...
// MISSING: verifier.VerifyEthTxRequest(transactionSignReq)
resp, httpErr := privysigner.PrivyCli.EthSignTransaction(&transactionSignReq,

ethWallet.WalletID)↪→

// ... signs without verification ...
}

Tool Used
Manual Review

10

https://github.com/sherlock-audit/2025-07-axal-tee-server/issues/61

Recommendation
Call verifier.VerifyEthTxRequest() before signing.

Discussion
EkamSinghPandher

Ah this verifier is actually meant for v2 launch, it is disabled at the moment because the
exact pools are not yet confirmed. It will be launched in a future launch, the logic has
just been initiated, you can take it as if it is not part of this codebase for now.

defsec

Marked as a acknowledged due to the feature is not implemented.

11

Issue M-3: Race condition enables wallet duplica-
tion
Source: https://github.com/sherlock-audit/2025-07-axal-tee-server/issues/62

Summary
User cache implementation contains a race condition that could lead to duplicate wallet
creation and application state inconsistencies under concurrent access.

Vulnerability Detail
The GetUsermethod in privy_user_manager.go:17-21 performs non-atomic cache
operations by first checking if a key exists using Has() and then separately retrieving the
value using Get().Value(). This creates a race condition where:

1. Multiple concurrent requests for the same uncached userId will all pass the initial
cache check

2. The cache entry could expire between the Has() check and Get() call, causing a nil
pointer dereference

3. All concurrent requests will proceed to wallet creation, potentially creating
duplicate wallets for the same user

The issue occurs because cache operations are split into separate calls rather than using
atomic get-and-check operations.

Impact
Multiple concurrent requests can trigger simultaneous wallet creation for the same user.

Code Snippet
https://github.com/sherlock-audit/2025-07-axal-tee-server/blob/868cac8486f4eb7e61
f277f4abc7853af109cb3c/verified-signer/enclave/privy-signer/privy_user_manager.go
#L17

Tool Used
Manual Review

12

https://github.com/sherlock-audit/2025-07-axal-tee-server/issues/62
https://github.com/sherlock-audit/2025-07-axal-tee-server/blob/868cac8486f4eb7e61f277f4abc7853af109cb3c/verified-signer/enclave/privy-signer/privy_user_manager.go#L17
https://github.com/sherlock-audit/2025-07-axal-tee-server/blob/868cac8486f4eb7e61f277f4abc7853af109cb3c/verified-signer/enclave/privy-signer/privy_user_manager.go#L17
https://github.com/sherlock-audit/2025-07-axal-tee-server/blob/868cac8486f4eb7e61f277f4abc7853af109cb3c/verified-signer/enclave/privy-signer/privy_user_manager.go#L17
https://github.com/sherlock-audit/2025-07-axal-tee-server/blob/868cac8486f4eb7e61f277f4abc7853af109cb3c/verified-signer/enclave/privy-signer/privy_user_manager.go#L17

Recommendation
Replace the separate Has() and Get() calls with a single atomic operation:

if item := cli.userCache.Get(userId); item != nil {
log.Infof("Cache Hit: %s", userId)
value := item.Value()
return &value, nil

}

Discussion
EkamSinghPandher

Accepted, good catch.

defsec

The issue has been fixed with https://github.com/getaxal/verified-signer/commit/af74
cab1d14c2262e7a7793f97e095539648ec8a.

13

https://github.com/getaxal/verified-signer/commit/af74cab1d14c2262e7a7793f97e095539648ec8a
https://github.com/getaxal/verified-signer/commit/af74cab1d14c2262e7a7793f97e095539648ec8a

Issue M-4: [API] Privy User ID in JWT Not Verified
Against Request Body
Source: https://github.com/sherlock-audit/2025-07-axal-tee-server/issues/92

Summary
The backend endpoint accepts a user_privy_id in the request body without verifying it
against the sub (subject) claim of the JWT provided in the Authorization header. This
allows a user to submit requests on behalf of another user by modifying the user_privy_i
d field.

Vulnerability Detail
In the provided request, the backend receives both a signed JWT (as a Bearer token) and
a user_privy_id in the request body:

{
"privy_token": "<valid_jwt>",
"token_amount_usdc": "100000000000000000",
"user_privy_id": "cmegehrg73d6dgg28bbsba"

}

However, the backend responds with a 200 OK status without validating that the user_pr
ivy_idmatches the sub claim from the decoded JWT:

"sub": "did:privy:cmd90qeh501qiju0m702o7z6q"

This gap allows attackers to submit arbitrary user_privy_id values, leading to possible
unauthorized actions on behalf of other users.

Impact
An attacker with a valid JWT for their own user could craft a request using someone
else’s user_privy_id, bypassing identity controls and potentially triggering privileged
actions (such as deposits, withdrawals, or changes) for other users.

Code Snippet

Tool Used
Manual Review

14

https://github.com/sherlock-audit/2025-07-axal-tee-server/issues/92

Recommendation
Always verify that the user_privy_id (or any user-identifying field) matches the sub claim
in the JWT provided. Reject the request if there is any mismatch between:

• Authorization header’s JWT → sub field

• user_privy_id or any similar identifier in the request body

Enforce this check on all endpoints that rely on user-specific context to prevent identity
spoofing.

Discussion
EkamSinghPandher

Ah understood, we will remove the user_privy_id since that field isnt even used

EkamSinghPandher

Neither of the token or the privy_id is used, this can be set as a medium issue

15

IssueM-5: [API] Strategyexecution canbe initiated
without sufficient balance
Source: https://github.com/sherlock-audit/2025-07-axal-tee-server/issues/95

Summary
The API endpoint for initiating a strategy deposit does not validate whether the user has
a sufficient balance. This allows deposit requests to be processed regardless of the user's
actual token holdings.

Vulnerability Detail
The /api/v1/strategy/deposit endpoint responds with a success message (Strategy exe
cution initiated successfully) even when the token_amount_usdc provided exceeds the
actual balance of the user's account. This lack of validation could result in failed or stuck
transactions downstream in the strategy pipeline.

Impact
Users can initiate strategy deposits without having the required balance.

Code Snippet
N/A — behavior was observed through manual testing.

Tool Used
Manual Review

Recommendation
Implement proper balance checks before executing strategy deposits. The backend
should verify whether the user has sufficient USDC before proceeding with the deposit
logic and return an appropriate error message if not.

16

https://github.com/sherlock-audit/2025-07-axal-tee-server/issues/95

Issue L-1: Resource exhaustion through unbounded
goroutines
Source: https://github.com/sherlock-audit/2025-07-axal-tee-server/issues/58

Summary
The host proxy implementation creates unlimited goroutines for each connection
without any bounds checking or resource management.

Vulnerability Detail
The proxy service spawns new goroutines for every incoming connection without
implementing connection limits, goroutine pools, or resource management. This can
lead to resource exhaustion attacks.

Impact
Complete system resource exhaustion.

Code Snippet

// host/cmd/main.go:17-23
func main() {

// Multiple unbounded proxy goroutines
go network.InitVsockToTcpProxy(ctx, 50001, 443,

"https://secretsmanager."+aws.USEast2.String()+".amazonaws.com")↪→

go network.InitVsockToTcpProxy(ctx, 50002, 443, "https://api.privy.io")
go network.InitTcpToVsockProxy(ctx, 8080, 50003)
go network.InitVsockToTcpProxy(ctx, 50004, 80, "http://169.254.169.254")

// No resource limits or management
for {

time.Sleep(time.Hour)
}

}

Tool Used
Manual Review

17

https://github.com/sherlock-audit/2025-07-axal-tee-server/issues/58

Recommendation
Consider using goroutine pools instead of unlimited goroutine creation.

Discussion
EkamSinghPandher

Will connection pool this(mainly just go network.InitTcpToVsockProxy(ctx, 8080, 50003)).
Accepted

defsec

Fixed with https://github.com/getaxal/verified-signer/pull/23/files.

18

https://github.com/getaxal/verified-signer/pull/23/files

Issue L-2: Cryptographic key material memory ex-
posure in TEE
Source: https://github.com/sherlock-audit/2025-07-axal-tee-server/issues/60

Summary
Memory management issue in the TEE allow cryptographic key material to persist in
enclave memory without proper sanitization, enabling key recovery through memory
analysis attacks.

Vulnerability Detail
The enclave's cryptographic operations fail to implement secure memory management
practices. Private keys and sensitive cryptographic material are processed using
standard Go memory allocation without explicit zeroing, allowing keys to persist in
memory indefinitely. String operations create immutable copies of base64-encoded
private keys that cannot be securely cleared, and SHA-256 hash operations leave
sensitive payload data in memory. The absence of secure memory scrubbing during
enclave termination means cryptographic secrets remain accessible through memory
dumps even after process termination.

Impact
ECDSA P-256 private keys can be extracted from enclave memory.

Code Snippet

// enclave/privy-signer/authorization_signature/signing.go:25-29
hash := sha256.Sum256([]byte(payload)) // Hash data persists in memory
signature, err := ecdsa.SignASN1(rand.Reader, privateKey, hash[:])
if err != nil {

return "", fmt.Errorf("failed to sign payload: %w", err)
}
// No explicit memory clearing - hash and signature data remains accessible

// enclave/privy-signer/authorization_signature/signing.go:42-46
pkcs8Bytes, err := base64.StdEncoding.DecodeString(pkcs8B64)
if err != nil {

return "", fmt.Errorf("failed to decode PKCS8 key: %w", err)
}
// Base64 decoding creates persistent copies in memory

// enclave/privy-signer/authorization_signature/signing.go:42

19

https://github.com/sherlock-audit/2025-07-axal-tee-server/issues/60

pkcs8B64 := privyAuthorizationKey // String copy of private key material
// Immutable string cannot be securely cleared from memory

Tool Used
Manual Review

Recommendation
1. Implement secure memory allocation using memory-mapped regions with mlock()
to prevent swapping.

2. Use explicit memory zeroing with memset_s() or equivalent after cryptographic
operations.

3. Replace string operations with byte slices for all sensitive data handling.

Discussion
EkamSinghPandher

Hmm, ok for this, AWS claims that the TEE memory is not accessible to anyone, even the
host vm. This is why we can hold privy private keys within this enclave and this is the trust
assumption we make. However, I will also still implement these changes. Accepted

defsec

Fixed with https://github.com/getaxal/verified-signer/commit/550d440f743ca11dd385
68e56c1a91ef40433b71.

20

https://github.com/getaxal/verified-signer/commit/550d440f743ca11dd38568e56c1a91ef40433b71
https://github.com/getaxal/verified-signer/commit/550d440f743ca11dd38568e56c1a91ef40433b71

IssueL-3: Inconsistenterrormessages in solanahan-
dlers
Source: https://github.com/sherlock-audit/2025-07-axal-tee-server/issues/63

Summary
The Solana transaction handlers contain hardcoded error messages that incorrectly
reference ”eth wallet” instead of ”sol wallet”, creating confusion during error handling
and potentially impacting incident response procedures.

Vulnerability Detail
Three locations in the Solana handler code contain error messages that reference
Ethereum wallets instead of Solana wallets:

1. Line 118: In the SolSignTxHandler function, the error log incorrectly states
”delegated eth wallet”

2. Lines 180-182: In the SolSignAndSendTxHandler function, both the error log and
response message incorrectly reference ”delegated eth wallet”

These inconsistencies occur when a user attempts Solana operations but doesn't have
the required delegated wallet configured.

Impact
Security logs contain incorrect information that could complicate forensic analysis.

Code Snippet
File: verified-signer/enclave/router/sol_handler.go

// Line 118 - Incorrect "eth wallet" reference in Solana handler
log.Errorf("Solana signTransaction API error user %s does not have a delegated eth

wallet", privyUserId)↪→

// Lines 180-182 - Incorrect "eth wallet" references in Solana handler
log.Errorf("Sol signAndSend API error user %s does not have a delegated eth

wallet", privyUserId)↪→

resp := privydata.Message{
Message: "user does not have an delegated eth wallet",

}

21

https://github.com/sherlock-audit/2025-07-axal-tee-server/issues/63

Tool Used
Manual Review

Recommendation
Update all error messages in Solana handlers to correctly reference Solana wallets.

Discussion
EkamSinghPandher

Yeah this is a error accepted.

defsec

Fixed with https://github.com/getaxal/verified-signer/commit/c29f1ae0df97ec89d23e
ea33c8c7a1b59777ccde.

22

https://github.com/getaxal/verified-signer/commit/c29f1ae0df97ec89d23eea33c8c7a1b59777ccde
https://github.com/getaxal/verified-signer/commit/c29f1ae0df97ec89d23eea33c8c7a1b59777ccde

Issue L-4: Insecure log file permissions
Source: https://github.com/sherlock-audit/2025-07-axal-tee-server/issues/64

Summary
Deployment scripts create log files without restricting access permissions, potentially
exposing sensitive TEE runtime information, cryptographic operations, and configuration
details to unauthorized users on the host system.

Vulnerability Detail
The deployment scripts (run.sh, run_prod.sh, docker_build.sh) create multiple log files but
don't set restrictive permissions:

• $LOG_DIR/build.log - Contains Docker build output

• $LOG_DIR/console.log - Contains enclave console output

• $LOG_DIR/enclave.log - Contains deployment logs

These files may contain sensitive information such as:

• AWS credential references

• Enclave configuration details

• Error messages with internal system information

• Timing information that could aid side-channel attacks

Impact
Sensitive runtime data exposed to other users/processes on host.

Code Snippet
Files: Multiple deployment scripts

run.sh - No permission restrictions
BUILD_LOG="$LOG_DIR/build.log"
CONSOLE_LOG="$LOG_DIR/console.log"
echo "=== Nitro Enclave Console Log - $(date) ===" > "$CONSOLE_LOG"

run_prod.sh - No permission restrictions
ENCLAVE_LOG="$LOG_DIR/enclave.log"
echo "=== Production Enclave Deployment - $(date) ===" >> "$ENCLAVE_LOG"

docker_build.sh - No permission restrictions

23

https://github.com/sherlock-audit/2025-07-axal-tee-server/issues/64

BUILD_LOG="$LOG_DIR/build.log"
echo "=== Docker Build Log - $(date) ===" >> "$BUILD_LOG"

Tool Used
Manual Review

Recommendation
Implement secure log file creation with restricted permissions:

Create log directory with restricted permissions
LOG_DIR="./log"
mkdir -p "$LOG_DIR"
chmod 750 "$LOG_DIR" # Owner rwx, group rx, other none

Create log files with restricted permissions
BUILD_LOG="$LOG_DIR/build.log"
CONSOLE_LOG="$LOG_DIR/console.log"
ENCLAVE_LOG="$LOG_DIR/enclave.log"

Set restrictive permissions on log files
touch "$BUILD_LOG" "$CONSOLE_LOG" "$ENCLAVE_LOG"
chmod 640 "$BUILD_LOG" "$CONSOLE_LOG" "$ENCLAVE_LOG" # Owner rw, group r, other

none↪→

chown root:nitro-enclave "$BUILD_LOG" "$CONSOLE_LOG" "$ENCLAVE_LOG" 2>/dev/null ||
true↪→

Discussion
EkamSinghPandher

Will double check the build logs to see if we print any sensitive info, in prod, the TEE
actually does not produce any logs. We only enable it with the add logger for dev
environments so there is actually no console.log in prod.

EkamSinghPandher

Yeah it seems there is no sensitive info in the build logs, just docker image name and eif
file location.

defsec

Fixed with https://github.com/getaxal/verified-signer/commit/02df0d402f029a8fa2f8
b2c15f5a893ba53d65b1.

24

https://github.com/getaxal/verified-signer/commit/02df0d402f029a8fa2f8b2c15f5a893ba53d65b1
https://github.com/getaxal/verified-signer/commit/02df0d402f029a8fa2f8b2c15f5a893ba53d65b1

IssueL-5: Crosschain replayattackviaunrestricted
network validation
Source: https://github.com/sherlock-audit/2025-07-axal-tee-server/issues/66

Summary
Missing chain ID validation allows attackers to execute transactions on any Ethereum
network, enabling cross-chain replay attacks and unintended network execution.

Vulnerability Detail
The ValidateTxRequest() function in EthSendTransactionRequest only validates that
CAIP2 is not empty (line 130-132) but performs no validation of:

• CAIP2 format (eip155:chainId structure)

• Allowed chain IDs (could accept eip155:1 for mainnet when expecting testnet)

• Numeric chain ID validation

• Cross-chain protection

Impact
Cross-chain replay attacks between different Ethereum networks.

Code Snippet
https://github.com/sherlock-audit/2025-07-axal-tee-server/blob/868cac8486f4eb7e61
f277f4abc7853af109cb3c/verified-signer/enclave/privy-signer/data/privy_eth_tx_data.
go#L130-L131

Tool Used
Manual Review

Recommendation
1. Parse and validate CAIP2 format: eip155:.

2. Maintain allowlist of permitted chain IDs.

3. Validate numeric chain ID matches expected network.

4. Reject transactions for unauthorized networks.

25

https://github.com/sherlock-audit/2025-07-axal-tee-server/issues/66
https://github.com/sherlock-audit/2025-07-axal-tee-server/blob/868cac8486f4eb7e61f277f4abc7853af109cb3c/verified-signer/enclave/privy-signer/data/privy_eth_tx_data.go#L130-L131
https://github.com/sherlock-audit/2025-07-axal-tee-server/blob/868cac8486f4eb7e61f277f4abc7853af109cb3c/verified-signer/enclave/privy-signer/data/privy_eth_tx_data.go#L130-L131
https://github.com/sherlock-audit/2025-07-axal-tee-server/blob/868cac8486f4eb7e61f277f4abc7853af109cb3c/verified-signer/enclave/privy-signer/data/privy_eth_tx_data.go#L130-L131

Discussion
EkamSinghPandher

Accepted, will add more complex caip2 parsing.

defsec

Fixed with https://github.com/getaxal/verified-signer/commit/b94e415e1df492c18d985
5207c5fe168f76f1091.

26

https://github.com/getaxal/verified-signer/commit/b94e415e1df492c18d9855207c5fe168f76f1091
https://github.com/getaxal/verified-signer/commit/b94e415e1df492c18d9855207c5fe168f76f1091

Issue L-6: Error variable shadowing in transaction
send handler
Source: https://github.com/sherlock-audit/2025-07-axal-tee-server/issues/75

Summary
The EthTransactionSendTxHandler function incorrectly logs the validation error instead
of the actual Privy API error when transaction sending fails, causing debugging
confusion and inconsistent error reporting.

Vulnerability Detail
In enclave/router/eth_handlers.go:190, the error logging uses the wrong variable:

resp, httpErr := privysigner.PrivyCli.EthSendTransaction(&transactionSendReq,
ethWallet.WalletID)↪→

if httpErr != nil {
log.Errorf("Eth transaction send API error user %s could not send tx with err:

%v", privyUserId, err)↪→

c.JSON(httpErr.Code, httpErr.Message)
return

}

The variable err at this point contains the last validation error from line 162, not the
actual Privy API error. This differs from the consistent pattern used in other handlers
(lines 66, 128, 252) which correctly log httpErr.Message.Message.

Impact
Developers investigating transaction failures will see validation errors instead of actual
API errors.

Code Snippet
https://github.com/sherlock-audit/2025-07-axal-tee-server/blob/868cac8486f4eb7e61
f277f4abc7853af109cb3c/verified-signer/enclave/router/eth_handlers.go#L190-L191

Tool Used
Manual Review

27

https://github.com/sherlock-audit/2025-07-axal-tee-server/issues/75
https://github.com/sherlock-audit/2025-07-axal-tee-server/blob/868cac8486f4eb7e61f277f4abc7853af109cb3c/verified-signer/enclave/router/eth_handlers.go#L190-L191
https://github.com/sherlock-audit/2025-07-axal-tee-server/blob/868cac8486f4eb7e61f277f4abc7853af109cb3c/verified-signer/enclave/router/eth_handlers.go#L190-L191
https://github.com/sherlock-audit/2025-07-axal-tee-server/blob/868cac8486f4eb7e61f277f4abc7853af109cb3c/verified-signer/enclave/router/eth_handlers.go#L190-L191

Recommendation
Change line 190 to use the correct error variable:

• log.Errorf("Eth transaction send API error user %s could not send tx with
err: %v", privyUserId, httpErr.Message.Message)

This ensures consistent error logging across all Ethereum handlers and provides accurate
debugging information.

Discussion
defsec

Same issue for Sol :

File: enclave/router/sol_handler.go:190
- Same issue: wrong error variable logged

defsec

Hi @EkamSinghPandher , I'm not sure If you missed that one, but also wanted to inform
you about that one. Thank you!

defsec

Fixed with https://github.com/getaxal/verified-signer/commit/17e5fd498fb0b1d5b1d6a
fdb9906899ae8b86c54.

28

https://github.com/getaxal/verified-signer/commit/17e5fd498fb0b1d5b1d6afdb9906899ae8b86c54
https://github.com/getaxal/verified-signer/commit/17e5fd498fb0b1d5b1d6afdb9906899ae8b86c54

Issue L-7: Dependency verification disabled on the
Dockerfile
Source: https://github.com/sherlock-audit/2025-07-axal-tee-server/issues/76

Summary
The Docker build configuration disables Go's dependency verification system by setting
GOSUMDB=off, which completely disables checksum validation for all Go modules

Vulnerability Detail
The current Dockerfile configuration globally disables the Go checksum database
verification:

ENV GOSUMDB=off

This setting was likely added to avoid checksum validation errors for private modules
(github.com/getaxal/*), but it incorrectly disables verification for all modules, including
public ones.

When GOSUMDB=off is set:

• No checksum verification occurs for any downloaded modules

• The build process becomes vulnerable to dependency substitution attacks

• Man-in-the-middle attacks can inject malicious code during dependency
downloads

• There's no protection against compromised module registries

Impact
No verification that downloaded modules match their expected checksums.

Code Snippet
Current vulnerable configuration:

ENV GOPRIVATE=github.com/getaxal/*
ENV GOPROXY=direct
ENV GOSUMDB=off

29

https://github.com/sherlock-audit/2025-07-axal-tee-server/issues/76

Tool Used
Manual Review

Recommendation
Replace the global GOSUMDB=off setting with GONOSUMDB that only bypasses
checksum verification for private modules:

1. Remove the global disable: Delete ENV GOSUMDB=off

2. Use GONOSUMDB for private modules: Add ENV
GONOSUMDB=github.com/getaxal/*

3. Keep GOPRIVATE: Maintain ENV GOPRIVATE=github.com/getaxal/* for proxy
bypass

Discussion
EkamSinghPandher

Accepted

defsec

Fixed with https://github.com/getaxal/verified-signer/commit/9ec47c8261b6ad2095f8
75f7a52a55be6a9fcf7e.

30

https://github.com/getaxal/verified-signer/commit/9ec47c8261b6ad2095f875f7a52a55be6a9fcf7e
https://github.com/getaxal/verified-signer/commit/9ec47c8261b6ad2095f875f7a52a55be6a9fcf7e

Issue L-8: Dockerfile running as root user
Source: https://github.com/sherlock-audit/2025-07-axal-tee-server/issues/77

Summary
The Dockerfile is configured to run the application as the root user, which poses a
significant security vulnerability. Running containers as root provides unnecessary
privileges and increases the attack surface if the container is compromised.

Vulnerability Detail
The Dockerfile creates a runtime image from alpine:latest and sets the working
directory to /root/, which implies the application will run as the root user. This is a
security anti-pattern that violates the principle of least privilege.

Impact
Running as root can lead to:

• Privilege Escalation: If the application is compromised, attackers gain root access
to the container

• Host System Compromise: Root access in containers can potentially escape to the
host system

• Data Breach: Root privileges allow access to all files and processes within the
container

• Compliance Violations: Many security standards (CIS, NIST) require containers to
run as non-root users

• Kubernetes Security: Pod Security Standards and admission controllers may reject
root containers

Code Snippet

Stage 2: Runtime image
FROM alpine:latest

WORKDIR /root/ # � Sets working directory to root user's home

Install CA certificates for HTTPS requests
RUN apk add --no-cache ca-certificates

Copy the binary from builder stage

31

https://github.com/sherlock-audit/2025-07-axal-tee-server/issues/77

COPY --from=builder /app/main .
RUN chmod +x ./main

Copy config file
COPY config.yaml /root/config.yaml # � Places files in root-owned directory

Run the application
CMD ["/root/main", "-config", "/root/config.yaml"] # � Runs as root

Tool Used
Manual Review

Recommendation
Consider running container as a non-root user.

Discussion
EkamSinghPandher

Accepted, will change it

defsec

Fixed with https://github.com/getaxal/verified-signer/commit/f49672a87f27a51d51e103
d5b6f5e9c09b9057fc.

32

https://github.com/getaxal/verified-signer/commit/f49672a87f27a51d51e103d5b6f5e9c09b9057fc
https://github.com/getaxal/verified-signer/commit/f49672a87f27a51d51e103d5b6f5e9c09b9057fc

Issue L-9: Missing LRU eviction policy in user cache
implementation
Source: https://github.com/sherlock-audit/2025-07-axal-tee-server/issues/78

Summary
The user cache implementation in the Privy client uses a fixed 30-minute TTL
configuration without capacity limits or LRU eviction policy. This creates an ineffective
caching strategy that can lead to memory bloat and poor cache performance,
especially under high load conditions with many unique users.

Vulnerability Detail
The current cache configuration only specifies a TTL without any capacity management:

cache := ttlcache.New(
ttlcache.WithTTL[string, data.PrivyUser](30 * time.Minute),

)

This implementation has several performance issues:

1. No Capacity Limits: The cache can grow indefinitely, potentially consuming
excessive memory.

2. No LRU Eviction: Without capacity limits, the jellydator/ttlcache v3 library doesn't
enable LRU eviction policy.

Impact
Unbounded cache growth can lead to memory exhaustion in high-traffic scenarios.

Code Snippet

cache := ttlcache.New(
ttlcache.WithTTL[string, data.PrivyUser](30 * time.Minute),

)

Tool Used
Manual Review

33

https://github.com/sherlock-audit/2025-07-axal-tee-server/issues/78

Recommendation
Implement a proper cache strategy with capacity limits and LRU eviction.

Discussion
EkamSinghPandher

Accepted, will add a capacity

defsec

Fixed with https://github.com/getaxal/verified-signer/commit/f7d4505c9514282635881
3fc9110f73a86811668.

34

https://github.com/getaxal/verified-signer/commit/f7d4505c95142826358813fc9110f73a86811668
https://github.com/getaxal/verified-signer/commit/f7d4505c95142826358813fc9110f73a86811668

Issue L-10: Dependency version conflicts in go mod-
ules
Source: https://github.com/sherlock-audit/2025-07-axal-tee-server/issues/79

Summary
The multi-module Go project has inconsistent dependency versions across its modules,
including mismatched versions of golang.org/x/sync (v0.14.0 vs v0.15.0) and internal
module dependencies (common module at v0.1.1 vs v0.1.6). These version conflicts can
lead to build failures, runtime incompatibilities, and unpredictable behavior.

Vulnerability Detail
The project consists of three Go modules with version inconsistencies:

1. golang.org/x/sync version mismatch: - common/go.mod: v0.14.0 (direct
dependency) - host/go.mod: v0.14.0 (indirect) - enclave/go.mod: v0.15.0 (indirect)

2. Internal module version mismatch: - host/go.mod: requires
github.com/getaxal/verified-signer/common v0.1.1 - enclave/go.mod: requires
github.com/getaxal/verified-signer/common v0.1.6

Impact
Go's module system may fail to resolve conflicting dependencies.

Code Snippet
// common/go.mod

module github.com/getaxal/verified-signer/common
go 1.24
require (

golang.org/x/sync v0.14.0
)

// host/go.mod

module github.com/getaxal/verified-signer/host
go 1.24
require (

github.com/getaxal/verified-signer/common v0.1.1
)
require (

35

https://github.com/sherlock-audit/2025-07-axal-tee-server/issues/79

golang.org/x/sync v0.14.0 // indirect
)

// enclave/go.mod

module github.com/getaxal/verified-signer/enclave
go 1.24
require (

github.com/getaxal/verified-signer/common v0.1.6
)
require (

golang.org/x/sync v0.15.0 // indirect
)

Tool Used
Manual Review

Recommendation
Standardize dependency versions across all modules.

Discussion
EkamSinghPandher

Will fix, accepted.

defsec

The issue is with using relative imports. Tree :
https://github.com/getaxal/verified-signer/tree/fix/audit

36

https://github.com/getaxal/verified-signer/tree/fix/audit

Issue L-11: Inconsistent error handling in main appli-
cation function
Source: https://github.com/sherlock-audit/2025-07-axal-tee-server/issues/81

Summary
The main function in enclave/cmd/main.go demonstrates inconsistent error handling
patterns where critical configuration loading errors result in silent failures using return
statements instead of proper application termination.

Vulnerability Detail
The application has inconsistent error handling for startup failures:

Lines 28-30 (Port Config Error):
if err != nil {

log.Errorf("Could not fetch Port config due to err: %v", err)
return // Silent exit

}

Lines 37-39 (Environment Config Error):
if err != nil {

log.Errorf("Could not fetch Env config due to err: %v", err)
return // Silent exit

}

Line 44 (Privy Client Error - Handled Correctly):
if err != nil {

log.Fatalf("Error creating privy cli: %v", err) // Proper fatal error
}

The application exits with status code 0 (success) even when critical errors occur.

Impact
Configuration errors cause the service to exit without proper error indication.

Code Snippet
https://github.com/sherlock-audit/2025-07-axal-tee-server/blob/868cac8486f4eb7e61
f277f4abc7853af109cb3c/verified-signer/enclave/cmd/main.go#L29-L30

37

https://github.com/sherlock-audit/2025-07-axal-tee-server/issues/81
https://github.com/sherlock-audit/2025-07-axal-tee-server/blob/868cac8486f4eb7e61f277f4abc7853af109cb3c/verified-signer/enclave/cmd/main.go#L29-L30
https://github.com/sherlock-audit/2025-07-axal-tee-server/blob/868cac8486f4eb7e61f277f4abc7853af109cb3c/verified-signer/enclave/cmd/main.go#L29-L30

func main() {
log.Info("Initiating enclave for Axal Verified Signer")

// Define command line flag for config path
configPath := flag.String("config", "config.yaml", "Path to configuration file")
flag.Parse()

// Setup network port management config
portCfg, err := enclave.LoadPortConfig(*configPath)

if err != nil {
log.Errorf("Could not fetch Port config due to err: %v", err)
return

}

PortsConfig = portCfg

envCfg, err := enclave.LoadEnvConfig(*configPath)

if err != nil {
log.Errorf("Could not fetch Env config due to err: %v", err)
return

}

err = privysigner.InitNewPrivyClient(*configPath, PortsConfig, envCfg)

if err != nil {
log.Fatalf("Error creating privy cli: %v", err)

}

router.InitRouter(PortsConfig.RouterVsockPort)
}

Tool Used
Manual Review

Recommendation
Replace all startup errors with log.Fatalf() for consistent behavior:

if err != nil {
log.Fatalf("Could not fetch Port config due to err: %v", err)

}

38

Discussion
EkamSinghPandher

Accepted

defsec

Fixed with : https://github.com/getaxal/verified-signer/commit/625baa1b780ef7e2f695
e91cac946cd4ee7b7bef

39

https://github.com/getaxal/verified-signer/commit/625baa1b780ef7e2f695e91cac946cd4ee7b7bef
https://github.com/getaxal/verified-signer/commit/625baa1b780ef7e2f695e91cac946cd4ee7b7bef

Issue L-12: Insufficient ethereumaddress validation
in whitelist verification
Source: https://github.com/sherlock-audit/2025-07-axal-tee-server/issues/85

Summary
The whitelist verification system performs only basic string matching without validating
Ethereum address format, checksums, or normalization.

Vulnerability Detail
The whitelist validation performs only a simple map lookup without any address format
validation:

func (wl *WhiteList) IsWhitelisted(address string) bool {
return (wl.addressList)[address] // Simple string match only

}

This implementation lacks several critical validations:

1. No Format Validation: Doesn't verify the address is a valid 42-character hex string
starting with ”0x”

2. No EIP-55 Checksum Validation: Doesn't validate mixed-case checksum encoding
per EIP-55

Impact
Invalid addresses passing validation may cause transaction failures downstream.

Code Snippet

func (v *Verifier) VerifyEthTxRequest(req data.EthTxRequest) bool {
switch req.GetMethod() {
case "eth_signTransaction":

tx := req.GetTransaction()
if tx == nil {

return false
}

if !v.verifiedAddresses.IsWhitelisted(tx.To) { // No address validation
return false

}
return true

40

https://github.com/sherlock-audit/2025-07-axal-tee-server/issues/85

}
}

func (wl *WhiteList) IsWhitelisted(address string) bool {
return (wl.addressList)[address] // Raw string comparison

}

Tool Used
Manual Review

Recommendation
Implement comprehensive Ethereum address validation and normalization.

Discussion
EkamSinghPandher

accepted

defsec

Fixed with https://github.com/getaxal/verified-signer/commit/68212b400aef64419b551
74b8eb625fb1333154e.

41

https://github.com/getaxal/verified-signer/commit/68212b400aef64419b55174b8eb625fb1333154e
https://github.com/getaxal/verified-signer/commit/68212b400aef64419b55174b8eb625fb1333154e

Issue L-13: [API] CORSMisconfiguration Allows Cre-
dentials withWildcard Origin (*)
Source: https://github.com/sherlock-audit/2025-07-axal-tee-server/issues/87

Summary
A CORS misconfiguration was observed in the backend response, where Access-Control-
Allow-Origin: * is used together with Access-Control-Allow-Credentials: true. This
violates the Fetch specification and can introduce serious security issues, including
unauthorized access to sensitive resources via malicious cross-origin requests.

Vulnerability Detail
The backend server (yield-backend-staging-v1.getaxal.com) responds to cross-origin
requests with the following CORS headers:

Access-Control-Allow-Origin: *
Access-Control-Allow-Credentials: true

This combination is invalid and dangerous. When credentials are allowed (Allow-Credent
ials: true), the Access-Control-Allow-Origin headermust not be *, and instead should
explicitly reflect the origin.

Allowing * with credentials opens up the possibility for an attacker to send
authenticated requests to the backend from a malicious origin (Origin: malicious.com),
which could lead to Cross-Site Request Forgery (CSRF) or unauthorized data access.

Impact
Cookies or authorization headers may be sent along with cross-origin requests from
malicious domains.

Code Snippet
Request:

Origin: malicious.com
Referer: https://yield-backend-staging-v1.getaxal.com/api/v1/health/ping

Response:

Access-Control-Allow-Origin: *
Access-Control-Allow-Credentials: true

42

https://github.com/sherlock-audit/2025-07-axal-tee-server/issues/87

Tool Used
Manual Review

Recommendation
Update the server’s CORS policy to dynamically reflect the Origin header only for
allowed domains when sending Access-Control-Allow-Credentials: true. Do not use
the wildcard * in such cases.

Discussion
EkamSinghPandher

Will fix, accepted

43

Issue L-14: [API] Server not behind cloudflare or any
reverse proxy
Source: https://github.com/sherlock-audit/2025-07-axal-tee-server/issues/88

Summary
The staging server (yield-backend-staging-v1.getaxal.com) appears to be exposed
directly to the internet without protection from Cloudflare or another reverse proxy.

Vulnerability Detail
The staging server (yield-backend-staging-v1.getaxal.com) appears to be exposed
directly to the internet without protection from Cloudflare or another reverse proxy.

Impact
• Increased risk of DDoS attacks, IP-based enumeration, or direct scanning

• Lack ofWAF (Web Application Firewall) and rate limiting

Code Snippet

Tool Used
Manual Review

Recommendation
Route all traffic through a security-focused reverse proxy like Cloudflare, AWS
CloudFront, or Fastly to harden edge-layer protection and obfuscate infrastructure
details.

Discussion
EkamSinghPandher

Will implement this

defsec

Acknowledged according to comment.

44

https://github.com/sherlock-audit/2025-07-axal-tee-server/issues/88

IssueL-15: [API]Overly PermissiveHTTPMethodsEx-
posure
Source: https://github.com/sherlock-audit/2025-07-axal-tee-server/issues/89

Summary
All HTTP methods (GET, POST, PUT, DELETE, OPTIONS) are allowed on the endpoint.

Vulnerability Detail
The server exposes all major HTTP methods : Access-Control-Allow-Methods: GET, POST,
PUT, DELETE, OPTIONS.

Impact
All HTTP methods are available, expanding attack surface.

Code Snippet

HTTP/2 404 Not Found
Date: Fri, 18 Jul 2025 09:53:33 GMT
Content-Type: text/plain
Content-Length: 18
Access-Control-Allow-Credentials: true
Access-Control-Allow-Headers: Authorization, Content-Type, X-Privy-Token
Access-Control-Allow-Methods: GET, POST, PUT, DELETE, OPTIONS
Access-Control-Allow-Origin: *
Access-Control-Expose-Headers: Content-Length

404 page not found

Tool Used
Manual Review

Recommendation
Only allow necessary HTTP methods for the specific endpoint.

45

https://github.com/sherlock-audit/2025-07-axal-tee-server/issues/89

Discussion
EkamSinghPandher

Will restrict them

46

Issue L-16: [API] Missing security headers
Source: https://github.com/sherlock-audit/2025-07-axal-tee-server/issues/90

Summary
The website https://yield-backend-staging-v1.getaxal.com/ is missing security headers.

Vulnerability Detail
The server response lacks security headers that are industry standard for protecting web
applications:

• Strict-Transport-Security: Missing HSTS header to enforce HTTPS

• Content-Security-Policy: No CSP header to prevent XSS attacks

• X-Frame-Options: Missing protection against clickjacking attacks

• X-Content-Type-Options: No protection against MIME sniffing

• Referrer-Policy: Missing control over referrer information disclosure

• Permissions-Policy: No control over browser features and APIs

Impact
• XSS vulnerabilities: Without CSP, malicious scripts can execute

• Clickjacking attacks: Missing X-Frame-Options allows site framing

• MIME sniffing attacks: Browser may execute malicious content

• Information disclosure: Referrer information may leak sensitive data

• Feature abuse: No restrictions on browser APIs and features

• HTTPS downgrade: No HSTS enforcement

Code Snippet
https://yield-backend-staging-v1.getaxal.com

Tool Used
Manual Review

47

https://github.com/sherlock-audit/2025-07-axal-tee-server/issues/90
https://yield-backend-staging-v1.getaxal.com/
https://yield-backend-staging-v1.getaxal.com

Recommendation
Implement the following security headers:

• Strict-Transport-Security: max-age=31536000; includeSubDomains

• Content-Security-Policy: default-src 'self'

• X-Frame-Options: SAMEORIGIN

• X-Content-Type-Options: nosniff

• Referrer-Policy: strict-origin-when-cross-origin

• Permissions-Policy: geolocation=(), microphone=(), camera=()

Discussion
EkamSinghPandher

Accepted, will enable

48

Issue L-17: [API] MFA Not Enforced on Login and Pri-
vate Key Export via Privy
Source: https://github.com/sherlock-audit/2025-07-axal-tee-server/issues/91

This issue has been acknowledged by the team but won't be fixed at this time.

Summary
The application does not enforce Multi-Factor Authentication (MFA) during critical user
actions such as logging in and exporting the private key or recovery phrase when using
Privy for authentication.

Vulnerability Detail
While Privy is integrated for user authentication, there is no additional layer of MFA
enforced during sensitive operations such as login or private key/phrase export.

Impact
Lack of MFA on critical actions increases the risk of unauthorized access and key
leakage. If an attacker gains access to a user's credentials (e.g., through phishing or
credential stuffing), they can log in and export the private key or recovery phrase
without any additional verification.

Code Snippet
https://axal-yield-frontend-git-staging-axal.vercel.app

Tool Used
Manual Review

Recommendation
Integrate an additional layer of MFA for:

• Login process (at minimum, after password verification)

• Exporting private key or recovery phrase

Privy allows adding MFA via Passkey/Authenticator; enable and enforce it on these
sensitive operations.

49

https://github.com/sherlock-audit/2025-07-axal-tee-server/issues/91
https://axal-yield-frontend-git-staging-axal.vercel.app

Discussion
EkamSinghPandher

We spoke to privy, they unfortunately dont have MFA for logins, will push them to
implement it

defsec

Acknowledged.

50

IssueL-18: [API] Privy token stored in cookiewithout
HttpOnly flag
Source: https://github.com/sherlock-audit/2025-07-axal-tee-server/issues/96

Summary
The privy-token cookie for the domain axal-yield-frontend-git-staging-axal.vercel.a
pp is stored without the HttpOnly flag.

Vulnerability Detail
• HttpOnly: false as seen in browser dev tools

• Cookie Name: privy-token

• Domain: axal-yield-frontend-git-staging-axal.vercel.app

• Path: /

• SameSite: Strict

• Secure: true

Impact
Without the HttpOnly flag can be accessed via JavaScript in the browser. If an attacker
exploits a stored or reflected XSS vulnerability, they can extract the user's
authentication token and perform unauthorized actions on their behalf.

Code Snippet
N/A

Tool Used
Manual Review

Recommendation
Set the HttpOnly flag on all authentication-related cookies, including privy-token, to
prevent client-side access.

51

https://github.com/sherlock-audit/2025-07-axal-tee-server/issues/96

Issue L-19: [API] Leaked API key &missing rate limit-
ing on third-party api
Source: https://github.com/sherlock-audit/2025-07-axal-tee-server/issues/98

Summary
The frontend is making unauthenticated requests directly to the Dune API (api.sim.dune.
com) using a hardcoded API key. This exposes the X-Sim-Api-Key to end users, allowing
them to use the key for arbitrary requests outside of the intended application context.

Vulnerability Detail
A hardcoded API key (X-Sim-Api-Key: sim_oasaX6kgxxxxx) is exposed in requests sent
directly from the browser to https://api.sim.dune.com. Since this key is embedded in the
frontend and accessible via browser developer tools, it can be extracted and abused by
malicious actors.

Impact
Without user-level throttling, a single user (or attacker) can consume the entire quota.

Code Snippet
The following request reveals the exposed key:

GET /v1/evm/balances/xxxx?chain_ids=all
Host: api.sim.dune.com
X-Sim-Api-Key: sim_oasaX6kgxxxxx
Origin: https://axal-yield-frontend-git-staging-axal.vercel.app

Tool Used
Manual Review

Recommendation
• Proxy the API requests through a backend service, which appends the X-Sim-Api-K
ey server-side. This prevents the key from being exposed on the client.

• Implement user-based rate limiting and session binding using access tokens.

• Rotate the exposed API key immediately and review any potential misuse.

52

https://github.com/sherlock-audit/2025-07-axal-tee-server/issues/98

Discussion
devd-99

We removed this dependency, it was a temporary workaround. Now we're getting this
data from the backend without Dune

defsec

Hi @devd-99 can I test your vercel page? Thank you so much!

53

Issue L-20: [API] Privy-Generated wallet interacts
with external protocols without enforced policies
Source: https://github.com/sherlock-audit/2025-07-axal-tee-server/issues/99

This issue has been acknowledged by the team but won't be fixed at this time.

Summary
The Axal Prime web application allows Privy-generated wallets to interact with multiple
external DeFi protocols. However, there is no enforcement of access policies or
restrictions based on allowlisted protocol interactions.

Vulnerability Detail
The application enables users to earn yield through Tier 1 lending protocols by utilizing
Privy-generated wallets. These wallets are capable of interacting with external DeFi
platforms such as Moonwell, Seamless, Spark, and Euler. However, there are no access
control policies implemented to restrict or validate which protocols the Privy wallet is
permitted to engage with.

Impact
Interaction with unverified or malicious protocols.

Code Snippet
No direct code reference available, observed via frontend behavior and transaction
tracing.

Tool Used
Manual Review

Recommendation
Implement Privy wallet policy enforcement on the backend or via middleware to allow
only interactions with an approved list of protocols. Additionally, validate destination
contracts and enforce these rules through signature-based or permissioned smart
contract layers.

54

https://github.com/sherlock-audit/2025-07-axal-tee-server/issues/99

Discussion
defsec

Marked as an acknowledged.

55

Issue L-21: Lack of mTLS authentication in commu-
nication
Source: https://github.com/sherlock-audit/2025-07-axal-tee-server/issues/100

This issue has been acknowledged by the team but won't be fixed at this time.

Summary
The current TLS setup used in the client-server communication ensures encryption but
lacks mutual authentication.

Vulnerability Detail
The platform currently uses TLS to secure communication between client and server
endpoints. However, there is no evidence of mutual TLS (mTLS) being implemented.

Impact
The server cannot guarantee the authenticity of the connecting client.

Code Snippet
N/A

Tool Used
Manual Review

Recommendation
Implement mutual TLS (mTLS) to enforce two-way authentication between host and TEE.

56

https://github.com/sherlock-audit/2025-07-axal-tee-server/issues/100

Disclaimers
Sherlock does not provide guarantees nor warranties relating to the security of the
project.

Usage of all smart contract software is at the respective users’ sole risk and is the users’
responsibility.

57

	Introduction
	Scope
	Final Commit Hash
	Findings
	Issues Found
	Issues Not Fixed and Not Acknowledged

	Issue H-1: Integer overflow in ethereum transaction value fields
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation
	Discussion

	Issue M-1: Incorrect HTTP status code in attestation endpoints
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation
	Discussion

	Issue M-2: Missing transaction verification on the signer
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation
	Discussion

	Issue M-3: Race condition enables wallet duplication
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation
	Discussion

	Issue M-4: [API] Privy User ID in JWT Not Verified Against Request Body
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation
	Discussion

	Issue M-5: [API] Strategy execution can be initiated without sufficient balance
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation

	Issue L-1: Resource exhaustion through unbounded goroutines
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation
	Discussion

	Issue L-2: Cryptographic key material memory exposure in TEE
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation
	Discussion

	Issue L-3: Inconsistent error messages in solana handlers
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation
	Discussion

	Issue L-4: Insecure log file permissions
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation
	Discussion

	Issue L-5: Cross chain replay attack via unrestricted network validation
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation
	Discussion

	Issue L-6: Error variable shadowing in transaction send handler
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation
	Discussion

	Issue L-7: Dependency verification disabled on the Dockerfile
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation
	Discussion

	Issue L-8: Dockerfile running as root user
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation
	Discussion

	Issue L-9: Missing LRU eviction policy in user cache implementation
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation
	Discussion

	Issue L-10: Dependency version conflicts in go modules
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation
	Discussion

	Issue L-11: Inconsistent error handling in main application function
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation
	Discussion

	Issue L-12: Insufficient ethereum address validation in whitelist verification
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation
	Discussion

	Issue L-13: [API] CORS Misconfiguration Allows Credentials with Wildcard Origin (*)
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation
	Discussion

	Issue L-14: [API] Server not behind cloudflare or any reverse proxy
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation
	Discussion

	Issue L-15: [API] Overly Permissive HTTP Methods Exposure
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation
	Discussion

	Issue L-16: [API] Missing security headers
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation
	Discussion

	Issue L-17: [API] MFA Not Enforced on Login and Private Key Export via Privy
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation
	Discussion

	Issue L-18: [API] Privy token stored in cookie without HttpOnly flag
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation

	Issue L-19: [API] Leaked API key & missing rate limiting on third-party api
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation
	Discussion

	Issue L-20: [API] Privy-Generated wallet interacts with external protocols without enforced policies
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation
	Discussion

	Issue L-21: Lack of mTLS authentication in communication
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation

	Disclaimers

